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ABSTRACT I 

This paper is an introduction to and an overview of mixed finite element 

methods. It discusses the mixed formulation of certain basic problems in 

elasticity and hydrodynamics. It also discusses special techniques for 

solving the discrete problem. 

This research was suDDorted under NASA Contract No. NAS1-18107 while the 
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1. INTRODUCTION 

The aim of this paper is to present an introductory survey of mixed 

finite element methods. We shall deal first with the so-called mixed formu- 

lation of some problems arising in elasticity and hydrodynamics. Then we 

shall analyze the difficulties connected with the choice of appropriate finite 

element discretizations for a mixed formulation. Finally, we shall discuss 

some special techniques that are often helpful for solving the discretized 

p r o blem . 
The notation of Ciarlet [I71 is followed throughout. 

2. MIXED FORMULATIONS 

A precise and satisfactory definition of "mixed method" (or of "mixed 

formulation") does not exist. The term started in the engineering literature 

(Herrmann [33], [34]; Hellan [32]) in connection with the elasticity theory to 

denote methods based on the Hellinger-Reissner principle, in which both dis- 

placements and stresses were approximated simultaneously. Even among the 

mathematicians, such as Glowinski [29], Babuska [ 61, Crouzeix-Raviart [ 181, 

Johnson [36], whose work can now be considered as pioneering, the term "mixed" 

was used only by Johnson in the context of plate bending problems. The term 

is now used in a much wider sense and has become rather vague. Here we will 

live with such vagueness, and we shall not try a new unsatisfactory defini- 

tion. Instead, we present a few cases: linear elliptic problems, Stokes 

equations for incompressible fluids, and linear elasticity problems. The 

first case will be dealt with in more detail because it is formally much 

simpler, while only a few essential points will be stressed for the other two 

cases. 
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Example 1. Linear  e l l i p t i c  ope ra to r s  

The use of mixed formulat ions f o r  l i n e a r  e l l i p t i c  ope ra to r s  i s  r a t h e r  

r ecen t  and,  as we s h a l l  see, is recommended only i n  some s p e c i a l  cases. How- 

e v e r ,  i t s  p r e s e n t a t i o n  is very s imple and t h i s  makes it an i d e a l  example. 

Consider the model problem: 

div(A(x) grad u) = f i n  D C d, (2.1) - -  

rNeu’ (A(x) grad u) en = gl on - -  - (2.2) 

where: i )  rDir u rNeu = r = a D  is a s p l i t t i n g  of a D ,  t h e  boundary of t h e  

domain D, i i )  A(x) - is  a smooth func t ion  on D ,  wi th  A(2) 1 a > 0 f o r  

every - x i n  D, iii) - n is  t h e  u n i t  outward normal t o  a D ,  and i v )  f ,  g l ,  

go are given smooth func t ions  i n  D and on rNeu’ r D i r  r e s p e c t i v e l y  . 
In t roducing  f o r  g = go o r  g = 0 t h e  manifold 

- 

we can w r i t e  t h e  v a r i a t i o n a l  formulat ion of (2.1) - (2.3) as fol lows:  

f i n d  u E H1 such t h a t  
g 

I A(x) grad urngrad v dx = -I f v  dx + I 
D D 

g vdr 1 - - I  - - 
rNeu 

1 Y v E HO(D). 
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In order to derive the mixed formulation of (2.1) - (2.3) we introduce 

the variable: 

(2.4) E = A(x) - -  grad u in D, 

so that (2.1) and (2.2) become, respectively: 

div p = f in D, (2.5) - 

The formulation ( 2 . 3 )  - (2.6) is  often called the mixed formulation of (2.1) - 
(2.3). Two reasonable variational formulations for (2.3) - (2.6) are now 

possible. The first one is: 

find u E H1 (D) and 2 E (L2(D))d such that: 
80 

In order to introduce the second variational formulation of (2 .3)  - (2.6) 
we define, for g = gl or g = 0 ,  the manifold: 
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The second variational formulation of (2.3) - (2.6) is now: 

find u E L2(D) and p E H (div;D) such that: 
81 

- 

(2.10) 2 I v div p dx = I fv dx 
D D 

Tf v E L (D). - -  - 

The difference between (2.7) - (2.8) and (2.9) - (2.10) is clearly a simple 

integration by parts ( o r ,  if you prefer, a Green's formula). However, it must 

be pointed out that the regularity required a priori for u and - p is some- 

how interchanged. This implies that, in discretizing (2.7) - (2.81, one has 

to use a continuous "u" and can use a discontinuous "p", - while in dis- 

cretizing (2.9) - (2.10) one can use a discontinuous "u" but must use a 

"p" - with divergence in L2(D) (and hence ~ ' 1  continuous at the 

interfaces). Note also the inversion in the treatment of the boundary condi- 

t ions . 
It is questionable whether (2.7) - (2.8) should be called a mixed formu- 

lation for problem (2.1) - (2.3). On the other hand, it seems acceptable to 

call the formulation (2.9) - (2.10) "mixed." In general, the original formu- 

lation (2.1) - (2.3) is to be preferred. It is simpler, it uses just one 

variable, and many robust methods are based on this approximation. However, 

in some applications, the "auxiliary" unknown - p defined in (2.4) is actually 

the more relevant physical variable and/or is the only information that has to 

be transferred into other equations that are coupled with. (2.1) - (2.3). In 

such cases, the use of a mixed formulation might be preferred, as far as it 
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provides (as it often does) a better accuracy for p. In general, the formu- 

lation (2.9) - (2.10) is then used, since it deals with a smoother vector 

field p. It is often said that the crucial feature in the mixed approach is 

that it averages ( A ( x ) ) - '  instead of A(x-). This is surely a better thing 

do, at least in one dimension, being connected with the homogenization theory; 

see for instance Rabuska-Osborn [ 7 ] .  However, dramatic improvements have been 

obtained by using (2.9) - (2.10) with a constant A(x>;  see for instance 

Marini-Savini [ 4 0 ] .  The true reason (if any) for the better behavior of the 

mixed formulations over the classical ones is still not completely under- 

stood. Practical experiences suggest the use of a mixed formulation for "bad 

behaved" problems, in which the variable p(x) is expected to be "smoother" 

than the variable u(x), but clearly this is not the whole story. 

- 

- 

-- 
- 

Example 2. Incompressible fluids 

The Stokes equations for incompressible fluids are of the type: 

-Au + grad p = f in D C IE? - - - (2.11) 

div u = 0 in D. (2.12) - 

Various kinds of boundary conditions can be used in connection with (2.11), 

(2.12). For the sake of simplicity, we shall consider only the (physically 

uninteresting) Dirichlet boundary conditions 

u = o  on r = aD. - (2.13) 
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The natural variational formulation of (2.11) - (2.13) is: 

find - u E (Hk(D))d and p E L2(D) such that: 

1 d (2.14) / grgd u:grgd v dx - / p div v dx = / f*v dx 
D D D 

V v E (HO(D)) , - -  -- - -- - - -  - - _  

/ q div u dx = 0 
D 

f q E L2(D). - -  (2.15) 

The formulation (2.14) - (2.15) had been used for years before the term "mixed 

method" came into use; however, it is recognized now that (2.14) - (2.15) 

behaves like a mixed formulation as far as the difficulties in finding good 

approximations are concerned. We shall also see that (2.14) - (2.15) easily 

falls into the same abstract framework that is commonly used for mixed 

methods. Hence, we are somehow allowed to consider (2.14) - (2.15) as a mixed 

formulation. 

Example 3. Linear elasticity problems 

For a vector valued function v(x) we define ~ ( v )  by: -- - -  

(2.16) 

The linear elasticity equations are now: 

d d  
(2.17) 

div a_ = f in D. - -  - (2.18) 
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Substituting (2.16), (2.17) into (2.18) gives a second order linear elliptic 

system in the unknowns 5 Clearly, E is the elasticity tensor and is 

assumed here to have constant coefficients (and nice "ellipticity" 

properties). Its inverse (compliance tensor) will be denoted by C. Hence: 

(2.19) 

We assume again the simple boundary conditions: 

(2.20) u = o  on aD. 

N 

This, of course, is strongly unrealistic: usually one has - u = 2 given 

However, the proper way of 

dealing with realistic boundary conditions coincides with the one used in 

Example 1: we chose then to give more details (with simpler notations) while 

discussing the linear elliptic problem. 

rNeu* and a_-n = t given on On rDir - -  

One can notice here that the splitting of the problem in more than one 

unknown is natural with solid physical reasons. This is probably why the 

first mixed formulations were used in elasticity theory. We shall present 

here only one mixed formulation, which is similar to the formulation (2.9) - 
(2.10) for a single elliptic equation. We set: 

and we consider the problem: 
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(2.21) 

Find - u E (L2(D))d and - u E H(div;D) - such that 

I ( C : a _ ) : z  dx + I uediv 1 dx = 0 
D D 

ff - T E H(div;D), - - - -  - - - -  

v*div u dx = 1 f-v dx V v E (L2(D))d. (2.22) I - - = -  - -  - - 
D D 

One can see that (2.21) - (2.22) practically coincide with the varia- 

tional formulation of the Hellinger-Reissner principle. The use of this 

principle in the framework of finite elements can be traced back to the pio- 

neering work of Herrmann [33], [34], and Hellan [32]. The interest in using 

I 
I 

I 

the stress field a_ as an independent variable is questionable in as simple I - 

a case as the present one, but its use is clear in more general and more I 
complicated problems involving nonlinearities, plasticity and so on. I 

We shall now state an abstract existence theorem that is a simplified I 

version of a more general result proved in [ l l ] .  

Theorem 1: Let and Y be real Hilbert spaces, a(S1,S2) 2 - - I 

bilinear form on Ex: and b ( s , $ )  a bilinear form on BxY. Set: - 

and assume that 

2 (2.23) 3 a > 0 sot. a(5,S) a1151Ir. V 5 E K, 
I 

(2.24) 
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(2.28) K(R2) = (5 I b(S,$) = <R2,9> Tf 9 E y l  , 
i 

and the formulation (2.25) - (2.26) corresponds to the introduction in (2.27) 

- (2.28) of the Lagrange multiplier 9. 
- 

I 

R 1  E E‘ and R2 E Y’ there exists a unique solution - Then for every 

(r,v) of the problem: 

Remark: Actually a stronger result is proved in 1111. Namely: {problem 

R 1  E E’ and R2 E Y ’ )  if - (2.25), (2.26) has a unique solution for every 

and only if ((2.24) holds and the bilinear form a(Cl,c2), restricted to K, 

is nonsingular (in the sense that it induces an ismorphism from K on 

K-)}. Clearly, if one assumes that a(C1,S2) is symmetric and positive 

semidefinite, then (2.23) and (2.24) are necessary and sufficient for the 

existence and uniqueness of the solution of (2.25) - (2.26). 

Remark: It is clear that, if a(c1,t2) is symmetric, the solution 

(F,T) of (2.25) - (2.26) minimizes the functional 

(2.27) 

on the subspace of E :  
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3. DISCRETIZING A MIXED FORIWLATION 

L e t  us  d e a l  f i r s t  wi th  t h e  a b s t r a c t  framework (2.25) - ( 2 . 2 6 ) .  Assume 

t h a t  we are  given two sequences “h’h>O and {‘h)h>O of subspaces of 

B and Y r e spec t ive ly .  We set 

! 

( 3 . 2 )  

We have t h e  fo l lowing  approximation theorem ( [ l l ] ) .  

Theorem 2: Assume t h a t  

( 3 . 3 )  b(S,*) > BhllJ, t tY v $ E Yh.  
H6lIc. - B h  > 0 s.t. SUP 

SE B h-E 0 )  L 

Then for  every R 1  E H’ - and R 2  E 1’ and f o r  every h > 0 the d i s c r e t e  

( 3 . 4 )  

( 3 . 5 )  

has  a unique so lu t ion .  Moreover, t h e r e  exis ts  a cons tan t  

such t h a t  
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The dependence of yh on a and Bh can be easily traced (see 

[ll]). Clearly if (3.2) and (3.3) hold with constants a ,  B independent 

h 
- -  

- 
of h, then (3.6) holds with a constant y independent of h. More general 

versions of Theorem 2 (and also of Theorem 1) can be found for instance in 

Falk-Osborn [21] or in Bernardi-Canuto-Maday [91. . 
We are now going to see the implications of Theorem 2 in the examples of 

the previous section. 

Example lh. Discretizations of the mixed formulations for linear elliptic 

oDerators. 

Many examples of successful discretizations of (2.9) - (2.10) are 

known. The first ones were introduced by Raviart and Thomas [44] and then 

elaborated and extended to more general cases by Nedelec [41]. Other families 

of possible discretizations were introduced years later by Brezzi, Douglas, 

and Marini [ 1 5 ]  and then elaborated and extended in several more recent papers 

(see, e.g., [13], [42], [14]). All of them share a very helpful property, the 

so-called "commuting diagram property", whose importance was first fully 

recognized in Douglas-Roberts [19]. Let us discuss it in a particular case: 

the BDM (Brezzi, Douglas, Marini) element of degree 2 for two-dimensional 

problems (D C I?). Let fh be a regular sequence of decompositions of D 

into triangles. We assume for the sake of simplicity that rNeu = 0 in 

(2.2) and A(& = 1. As a discretization of H(div;D) and L2(D) 

respectively we take 1 
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V T E Th). Yh = { V I  v E L 2 ( D ) ;  v iT  E P1 (3.8) 

Here and i n  t h e  fo l lowing  Pk(s) ( o r  simply Pk) w i l l  denote t h e  set of 

polynomials of degree < k on t h e  s e t  S .  We cons ider  now t h e  d i s c r e t i z e d  

problem : 

- 

I 

such t h a t  f i n d  q, E xh and uh I 
- 

E 'h I 

I v d i v  p dx = I f v dx V v E  Yh. I - 
D - - h -  (3.10) 

D I 

We d e f i n e  now an ope ra to r  Mh from ( ~ ~ ( ~ 1 1 ~  i n t o  - by: "h 

1) I (2 - M.,$)*n - 2  p ds  = 0 
e 

V e,  edge i n  Th, V p2 E P2(e )  

V T,  t r i a n g l e  i n  Th i i )  I (q - -Mfi)dE = 0 
T 

Th i i i )  I (9 - M@)*rot bT dx - = 0 
T 

TT T,  t r i a n g l e  i n  

where bT:= X X X is t h e  cubic  vanish ing  on aT ,  and 

r o t  - +:= (-a+/ax,, a+/ax2) .  We a l s o  d e f i n e  an ope ra to r  P h  from L ~ ( D >  

i n t o  Yh by: I 

1 2 3  

I 

I 

(3.12) JT(v - phv)pldx = 0 V T, t r i a n g l e  i n  T,, V p1 E P1(T). 
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L e t  us  check now t h a t  d i v  M a  = Phdiv - q f o r  a l l  - q E (H1(D))2 .  

Actua l ly ,  f o r  a l l  vh E JI, we have : 

= v qands - grad - vh*Adx - = vhdivqdx - = vhPhdivgd> 
T T T h-- aT 

It i s  a l s o  easy t o  check t h a t  t h e  divergence ope ra to r  i s  l i n e a r ,  cont inuous 

and s u r j e c t i v e  from (H1(D)l2 onto  L2(D). This  can be summarized i n  t h e  

fo l lowing  diagram: 

d i v  2 ( H ~ ( D ) > ~  - L ( D )  - o 
I I 

(3.14) 

It i s  easy t o  check t h a t  (3.14) implies ,  i n  p a r t i c u l a r ,  (3.2) and (3.31, but  

i t  is  much more powerful than  t h a t .  For i n s t ance ,  i t  impl ies :  

(3.15) 

I 

with  Y 1 ,  Y2 are independent of h (whenever - p E ( H ~ ( D ) ) * ) .  I n  

p a r t i c u l a r ,  wi th  t h e  choice (3.7) - (3.8) t h i s  y i e l d s :  

(3.17) 
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Note that (3.17) does not follow from the abstract error estimate (3.6). 

The commuting diagram has other nice properties. For instance, it allows 

a simple proof of error estimates in dual norms, as in Douglas-Roberts [20] or 

in Brezzi-Douglas-Marini [15] . Error estimates in L" norms are also 

available: see for instance Scholz [45], [46] and Gastaldi-Nochetto [261, 

W I  
The most popular scheme for (2.9) - (2.10), that is, the "lowest order 

Raviart-Thomas", can be obtained by using, instead of (3.71, (3.8): 

Accordingly, one then uses Po(e) instead of P2(e) in (3.11)i) and drops 

(3.11)ii) and iii); similiarly one uses PO(T) instead of P1(T) in 

(3.12). It follows immediately that (3.13) still holds, and then (3.14) also 

holds. Clearly, only an O(h) rate can now be achieved in both (3.17) and 

(3.18). 

Example 2h. Discretizations of the Stokes equations. 

Life is much harder when we go from (2.9) - (2.10) to (2.14) - (2.15). 
is such that 

(our present Z )  so that 

(3.2) also holds regardless of the choice of the discretization. This might 

The only positive aspect is that now the bilinear form a(2, x) 
(2.23) actually holds in the whole (HA(D)) 2 
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partially excuse all the "Stokes-thinking" people who consider ( 3 . 3 )  as the 

condition for mixed methods. If one tries to discretize even the easy ( 2 . 9 )  - 
( 2 . 1 0 )  with a scheme that does not satisfy ( 3 . 1 4 ) ,  one will see that ( 3 . 2 )  can 

cause great difficulty. 

- 

However, coming back to Stokes, it is true that the only condition to be 

satisfied by the discretization is (3 .31 ,  which now reads: 

with, if possible, 8, independent of h. A sufficient condition i s  the 

following so-called Fortin's trick [221: we have to find a linear operator 

Mh from (H~(D>>~ into such that: 

We consider one example. Let Th be a decomposition of D into rectan- 

gles, R, with sides parallel to the axes (the use of isoparametric elements is 

obviously also allowed, but more complicated to describe), and choose: 

(3 .23 )  

( 3 . 2 4 )  

In (3 .23)  

E P1(R)  %J R E  Th). 2 
q l R  

'h = { q l  q E L ('1; J q '2 = 0 ;  
D 

Q2(R) means the set of polynomials of degree - < 2 i n  each 
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variable. Let us see how to construct the operator Mh at least for a 

smooth - V. To deal with a general - v in ( H k ( D ) ) 2  is just technically 

more complicated, but the philosophy is the same. In each R we set: 

M e  = v at the vertices (8 conditions); - (3 .25 )  

(3 .26 )  I (v - 1)ds = 0 
e 

on each edge (8 conditions); 

(3 .27 )  I div(v - - v)xidx - = 0 i = 1 , 2  ( 2  conditions). 
R 

We have a total of 18 conditions (note that the dimension of It 

is easy to check that they are independent. Let us check ( 3 . 2 2 ) ;  that is, let 

us check that 

Q2 is 9 ) .  

I div( 
R 

v - v)pldx = 0 V p1 E P1(R). I % - -  
(3 .28 )  

Clearly, ( 3 . 2 7 )  implies that (3 .28)  holds for p1 = x1 and p1 = x2.  We need 

only to check p1 : 1: 

(3 .29 )  I div(v - v)dx = I (v - - -  v)*n ds = 0, 
R a R  

due to (3 .26) .  We can now apply ( 3 . 6 )  and obtain: 

(3.30) 

There are many other known choices available for obtaining a discretization of 
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(2.14) - (2.15) that satisfies (3.20). An almost complete list of them can be 

found in Brezzi-Fortin' together with the references. In particular, Scott 

and Vogelius [471 proved that, under minor restrictions on the decomposition 

of into triangles, one can always use a continuous velocity field of local 

degree k and a discontinuous pressure field of local degree k-1, provided 

k - > 4. For the low degrees, a special headache is provided by the use of 

bilinear velocities and constant pressures: its convergence has been proved 

in a variety of cases (see Johnson-Pitkaranta [381, Stenberg [48], Pitkaranta- 

Stenberg [43]) but not yet in the general case. In any event, a filtering of 

the pressure field is always required to eliminate the checkerboard modes. 

General strategies for constructing discretizations that fulfill (3.20) are 

given in Boland-Nicolaides [ 103 and Brezzi-Pitkaranta [16]. Modifications of 

the discrete equations that allow violation of (3.3) have received 

considerable attention in recent times. Roughly speaking, in the special case 

of equations (2.14), (2.15), they consist in substituting (2.15) with the 

"perturbed" equation 

D 

.. .. 

.. 

2 (3.31) 1 q div - -  u dx + h 
D D 

1 grad - pegrad - q dx - = 0 Tf q E H1(D) 

(Brezzi-Pitciranta [ 161 ) provided that one uses a continuous pressure field in 

the finite element discretization. A modification of (3.31) of the form: 

2 I q div u dx = 1 a hT 1 ( A 2  - grad - P + - -  f)-grad q dx (3.32) - 
D TETh T 

'F. Brezzi and M. Fortin, Rook in preparation. 



-1 8- 

(a = T) has been introduced 

by Hughes-Balestra-Franca [351. Note that (3.31) is simpler but has a 

consistency error of order h2 that is not present in (3.32). For more 

details and additional results in this direction, see Brezzi-Douglas [12]. 

small parameter to be adjusted; hT = diameter of 

For the use of more general boundary conditions, the basic reference is 
.. 

Verfurth [49]; see also the references contained therein. 

Additional references for the Stokes and Navier-Stokes equations can be 

found in Glowinski-Pironneau [30], Glowinski [31], Girault-Raviart [281 and 

Rrezzi-Fortin . 2 

Example 3h. Discretizations of linear elasticity problems 

It is difficult, in general, to find convenient finite element discreti- 

zations for equations (2.21) - (2.22). We shall briefly indicate here four 

possible ways to proceed. The first possibility is to try to construct spaces 

that verify the commuting diagram property (as in (3.14)). This has been 

possible, up to now, only by means of composite elements: that is, each 

element is split into sub-elements and one uses trial functions that are 

polynomials in each sub-element (plus suitable continuity requirements form 

one sub-element to the other). Examples of this approach can be found in 

Johnson-Mercier [37] or in Arnold-Douglas-Gupta [4]. A second possibility is 

to give up the symmetry condition that appears in the definition of 

H(div;D) - and to enforce it a posteriori by means of a Lagrange multiplier. 

After discretization we deal then with stress fields having only a weak - 

~~~~~ ~~~~ ~~ ~~~ 

2F. Brezzi and M. Fortin, Book in preparation. 
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symmetry. This idea was first used by Fraeijs de Veubeke [ 2 3 ]  and then modi- 

fied and analyzed by Amara-Thomas 111 and Arnold-Brezzi-Douglas [31. A third 

possibility is to change the "auxiliary function" and use a different, 

nonsymmetric, tensor field instead of a _ .  This will in general produce some 

# 0) that can be treated with the introduction trouble at rNeu 
We refer to Arnold-Falk [ 5 ]  of an additional Lagrange multiplier on 

for more details on this approach. Finally, a fourth possibility is the addi- 

tion of a stabilizing term in the style of (3.31) or (3.32). For this we 

refer to Franca-Loula-Hughes-Miranda [25] .  

- 

(if rNeu 

rNeu' 

It should be pointed out that additional difficulties arise when dealing 

with nearly incompressible materials. In these cases (2.23) ceases to hold 

(in the limit) in the whole space but still holds for divergence-free tensor 

fields. This implies that (3.2) must also be checked if the discretization is 

such that Kh (Z K. Additional references for the above (and many other) 

applications can be found in Brezzi-Fortin 3 

4. NUMERICAL METHODS FOR SOLVING TBE DISCRETIZED PROBLEM 

The major difficulty that arises in solving a linear problem such as 

(3.4) (3.5) is that the associated matrix 

3F. Rrezzi and M. Fortin, Rook in preparation. 
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is indefinite. There are many ways of overcoming this difficulty, mostly 

using some particular feature of the problem under consideration in order t o  

rewrite it in a different form. Here we shall briefly sketch two of them: 

one which is mostly used in Examples 1 and 3 and the other used in Example 2. 

The first technique, which is very old (see Fraeijs de Veubeke [24]) 

starts from the following simple observation. If the space is made of 

functions that are completely discontinuous from one element t o  the other, 

then the most natural choice of basis functions for - will produce a 

matrix A in (4.1) which is block-diagonal. Then the inverse matrix A-l 

can be easily computed explicitly. 

and substituting into (3.5) (static condensation) leaves us with the final 

Note that (3.2) and (3.3) will matrix BTA-'B and the only unkown 

imply that BTA-lB is symmetric and positive definite (if a(S1,S2) is 

have some continuity symmetric). Now if instead the functions in E 

"h 

"h 

- 
Solving (3.4) element by element for 5, 

- 
'he 

h 
properties from one element to the other (as in Example lh 

continuous at the interfaces), this cannot be done. However, 

to work in a larger space, say made of discontinuous 

then require the continuity by means of a Lagrange multiplier. 

procedure in the particular case of Example lh. We set: 

-h' 

we had &.2 

one can choose 

functions, and 

Let us see the 

(4.3) Ah = C U I  p l e  E P2(e) Tf e, internal edge in Th, p = 0 on aD), 

(4.4) 
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N 

q E H h  then - Clearly, if 

(4.5) 

It is 

( 4 . 6 )  

( 4 . 7 )  

( 4 . 8 )  

- q E Bh a c(q,p) = 0 E Ah. 

not difficult to check that the new problem 

N 3 E H h ,  uh E Yh, X E Ah such that h 
find 

N N I &*Q dz + 1 I uh div q dx = I g qends + c(q,Xh) - 
D T T  a D  

V 3 E Hh 0-- - -  

1 I v div: 
T T  

dx = I f v dx +J v E Y h  
D -h 

N 

c(&,p) = 0 p E Ah 

- N - N has a unique solution, and that ih - uh - uh. Now both the unknowns 

N N 

are a priori discontinuous and they can be eliminated, at the h ph and u 

element level, by static condensation. 

will be symmetric and positive definite. It is clear that A h  itself 

should be an approximation of u at the interfaces, and it has been used as 

such by engineers. However, it was only rather recently that it was proved 

mathematically that Ah converges to u, and in general with a better order 

of convergence than Uh itself (see Arnold-Brezzi [21) .  For instance, in the 

present case, once 

uh E P3(T) such that 

The final matrix, in the unknown A h ,  

is known one can construct, element by element, an A h  
* 
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(4.9) 

* 
(u - X )p ds = 0 Tf e edge of T, Vp2 E P2(e) h 2  

and show that 

(4.10) 

* 
T (uh - uh)dE = 0 

instead of (3.18) (for the proof of (4.10) see [151). 

only with O(h2) in (4.10)) can also be achieved 

A similar result (but 

with the lowest order 

Raviart-Thomas element described at the end of Example lh. However, the best 

way to compute the solution for this last element is to solve with the so- 

called PI-nonconforming method and then use the postprocessing of Marini 

to u see Rrezzi- [391 .  For additional results on the convergence of 

Douglas-Marini [15], Brezzi-Douglas-Fortin-Marini [14] and Gastaldi-Nochetto 
'h 

[271 

This same idea (disconnect Zh and use a Lagrange multiplier to force 

back the continuity) can be used for elasticity problems and in many other 

cases. However, it has not been possible, so far, to use it, for instance, 

for the Stokes equations (and more generally when continuity at the vertices 

is required in Eh). Then one can use the following other trick, that was 

first analyzed by Bercovier [8]. If the space Yh is made of discontinuous 

functions (as it was the case in our Example 2h), then one can perturb equa- 

tion (3.5) into 

(4.11) 
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The corresponding matrix (for ( 3 . 4 1 ,  ( 4 . 1 1 ) )  becomes, roughly, 

( 4 . 1 2 )  (f -1) 
Now the discontinuity in 'h allows us to eliminate Th at the element 

level. We obtain in that way a matrix A+s-lBBT. If ( 3 . 2 )  and ( 3 . 3 )  are 

satisfied, this new matrix will be symmetric and positive definite (always 

if a(C1,C2) is symmetric). Moreover, calling (cL,JIE) the solution of 

( 3 . 4 )  and ( 4 . 1 1 1 ,  one has 

E: - E: lEh - Chll .  + Iqh - J I h I l Y  = O(€). 
L 

( 4 . 1 3 )  

The method can also be applied when Yh consists of continuous functions, 

provided that some lumping procedure is used to compute the inner product in 

( 4 . 1 1 ) .  However, in such cases, one gets for E"BBT a bandwidth that is 

generally larger than that of A ,  and this is often a considerable drawback. 

A different attempt to reduce (3 .4)  ( 3 . 5 )  to a single equation in the 

4 case of the Stokes problem can be found in Bramble 

4J. H. Bramble, to appear. 
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